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a b s t r a c t

Many papers report that accuracy of the Redlich–Peterson (R–P) isotherm equation (three parameters)
is higher than those of Langmuir and Freundlich isotherm equations (two parameters). This paper first
explains why the accuracy of the R–P isotherm equation is equal to or higher than that of two parameters
eywords:
ctivated carbon
edlich–Peterson equation
dsorption isotherm
yes

isotherm equations. This study suggests a new exponential linear equation with exponent variable ˛,
and solves the most suitable ˛ value with the aid of Microsoft Excel and Sigma Plot 9.0. This exponential
method is quick, simple, and accurate for fitting the R–P isotherm equation to experimental data sets of
adsorption systems compared with a logarithmical linear form frequently used previously. This investi-
gation prepares four kinds of pistachio shell activated carbons with various doses of NaOH for studying
isotherm equilibrium adsorptions of three dyes. The R–P isotherm equation best fit adsorption system

ork.
data sets studied in this w

. Introduction

Redlich and Peterson suggested a three parameter adsorp-
ion isotherm equation [1] in 1959, unanimously called the
edlich–Peterson (R–P) isotherm equation (or model). The equa-
ion amends inaccuracies of two parameter Langmuir and
reundlich isotherm equations in some adsorption systems. In the
iterature survey, thirty papers reported the R–P equation was more
ccurate than the Langmuir and Freundlich equation in describ-
ng adsorption systems [2–31]; twelve papers reported that both
–P and Langmuir isotherm equations had equally high accuracy
32–43] because when ˛ value in the R–P equation equals 1, its
orm is the same as the Langmuir equation. Three papers addition-
lly reported that both R–P and Freundlich isotherm equations had
qually high accuracy [44–46] because when the constant value of
he R–P equation is large enough, its form is the same as the Fre-
ndlich equation (proved later in this text); but the same papers
eported Langmuir isotherm equation accuracy was higher than

he R–P isotherm equation (not shown). These results are doubt-
ul because when ˛ value is adjusted to equal 1, both equations
re the same and both accuracies should be the same. Another
apers reported Freundlich isotherm equation accuracy was higher
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385-8947/$ – see front matter © 2010 Published by Elsevier B.V.
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than the R–P isotherm equation (not shown). This cannot be correct
either.

The poorer accuracy of the R–P isotherm equation reported
in much of the literature is due to poor fitting methods. There-
fore, this study suggests a simple, accurate operating method of
the Redlich–Peterson isotherm equation. The adsorption of three
dyes (BB1, MB, and AB74) used activated carbon prepared from
pistachio shells with NaOH activation was carried out in this inves-
tigation. The results show the superiority of the Redlich–Peterson
isotherm equation for describing adsorption systems by comparing
R–P, Langmuir, and Freundlich isotherm equations and a suit-
able ˛ value range. The characteristic curve of the dimensionless
R–P equation form explains the wide application of this equa-
tion.

2. Principle

2.1. Linear form of R–P isotherm equation

The R–P isotherm equation is expressed as
qe = q′
monbRPCe

1 + bRPC˛
e

(1)

where q′
mon and bRP are parameters of the R–P isotherm equation.

Two linear forms of Eq. (1) can be obtained by transformation as

dx.doi.org/10.1016/j.cej.2010.03.006
http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
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nd

n
(

bRPq′
mon

Ce

qe
− 1

)
= ln bRP + ˛ ln Ce (2)

nd

Ce

qe
= 1

bRPq′
mon

+
(

1
q′

mon

)
C˛

e (3)

The logarithmic linear form of Eq. (2) was adopted by many
esearchers [6,8,11,13,19,24,25,27,28,30,32,36–38,43]. For fitting
q. (2) to the experimental data to obtain a linear plot of
n(bRPq′

mon(Ce/qe) − 1) vs. ln Ce, various constant (bRPq′
mon) values

ust be tried before the optimum line is obtained. After obtaining
he optimum line, calculate the constants of Eq. (2). The range of
RPq′

mon values is wide, from 0.01 to several hundred, so it is not
asy to obtain the correct value. Eq. (3) is the exponential linear
orm obtained by plotting Ce/qe vs. C˛

e . By trial and error, this study
dopted an ˛ value for the optimum line. In the specific range, ˛
alues are limited and it is easy to obtain the correct value (to be
roved later). Another similar form of Eq. (3) has appeared in a few
apers [17,47–49].

.2. Special conditions of R–P isotherm equation

When ˛ = 1, it is the same as the Langmuir isotherm equation.

Ce

qe
= 1

KLqmon
+

(
1

qmon

)
Ce (4)

here bRP of Eq. (3) equals KL of Eq. (4), and q′
mon equals qmon. When

/bRPq′
mon = 0, it is the same as the Freundlich isotherm equation,

hat is

e = KF C1/n
e (5)

here 1/q′
mon of Eq. (3) equals KF of Eq. (5), and ˛ equals 1/n. Usu-

lly, 1/bRPq′
mon is not equal to 0, and q′

mon is constant, so only when
RP is large enough, is the result of the R–P equation close to the
reundlich equation. When ˛ = 0, Eq. (1) can be written as

e = q′
monbRPCe

1 + bRP
(6)

Eq. (6) is the same as Henry’s law equation.

.3. Characteristic curves of R–P isotherm equation

Eq. (3) can be rewritten as:

Cref

qref
= 1

bRPq′
mon

+
(

1
q′

mon

)
C˛

ref (7)

here Cref is the highest equilibrium concentration of the adsorp-
ion system, and qref is the equilibrium adsorption amount at Cref.

hen Eq. (7) is divided by Eq. (3), it yields

qe

qref
=

(
Ce

Cref

)
(1/bRPC˛

ref
) + 1

(1/bRPC˛
ref

) + (Ce/Cref )˛ (8)

Eq. (8) is the dimensionless form of the R–P isotherm equation.
ig. 1(a) and (b) depict plots of qe/qref vs. Ce/Cref with ˛ as a param-
ter for bRPC˛

ref
= 2 and 10, respectively. When ˛ = 1, the curve is the
ame as the curve in the Langmuir isotherm equation. The ˛ value
odifies the curve. When ˛ value increases, curvature increases.
sually, the ˛ value reported in literature is less than 1 (proved

ater in this text). These low ˛ values mean their isotherm equation
urves are milder than those of the Langmuir isotherm equation.
Fig. 1. Adsorption characteristic curves of dimensionless Redlich–Peterson
isotherm equation (a) bRP C˛

ref
= 2 and (b) bRP C˛

ref
= 10.

3. Materials and method

3.1. Preparation of the activated carbon

Pistachio shells were dried at 110 ◦C for more than 24 h, then
placed them into a high temperature, oxygen-deficient oven by
introducing N2 gas. The oven was kept at 450 ◦C for 2 h to carbonize
the pistachio shells into char. The carbonization yield was 32.0 wt%.

Char was ground and sieved into a particle size ranging from
0.833 to 1.65 mm. The activation step was conducted by adding
the char and NaOH in water, uniformly mixed, and dried at 130 ◦C.
The solid was then placed in an oven that was heated and main-
tained at 780 ◦C for 1 h in the presence of N2 gas. The product was
neutralized by HCl (600 cm3) having an equal equivalent to NaOH
solution until most of CO2 bubbles were disappeared. The product
was kept at 80 ◦C for 1 h in water bath, and washed continuously
with distilled water till the water was neutral. The samples were
classified according to agent/char ratio as PSN2, PSN2.5, PSN3 and

PSN3.5. The first two characters, PS, represent the Pistachio shells.
The third character, N, represents NaOH activation. The number
represents the weight NaOH/char ratio.

The BET surface area of the adsorbent (Sp) was measured from N2
adsorption isotherms at 77 K with a sorptiormeter (Porous Materi-
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ig. 2. (a) BET surface area and micropore surface area ratio, (b) total pore volume
nd mean pore diameter of activated carbon derived from pistachio shell by NaOH
ctivation.

ls Co., BET-202A), and the total pore volume (Vpore) was calculated
sing the manufacturer s software. The pore size distribution was
lso determined using the BJH theory [50]. On the other hand, the
icropore volume (Vmicro) and exterior surface area (Sext) were

alculated by the t-plot method [51,52] and, accordingly, the micro-
ore surface area (Smicro) was obtained by subtracting Sext from Sp

53].

.2. Procedures for adsorption experiments
Analytical reagent grade acid blue 74 (AB74, Mw (molecular
eight) = 466.4), basic brown 1 (BB1, Mw = 419.4), and methylene

lue (MB, Mw = 284.3) were offered from Merck Co. and were used
s received.

able 1
nalysis of adsorptions of dyes on the activated carbons based on Langmuir and Freundli

Dyes Carbon Langmuir eq.

qmon (g/kg) KL (m3/g) r2

BB1 PSN2 794 0.015 0.9982
PSN2.5 1217 0.073 0.9995
PSN3 1422 0.132 0.9998
PSN3.5 1806 0.080 0.9981

MB PSN2 394 0.029 0.9975
PSN2.5 674 0.116 0.9996
PSN3 745 0.218 0.9999
PSN3.5 759 0.271 0.9999

AB74 PSN2 204 0.078 0.9996
PSN2.5 465 0.052 0.9972
PSN3 515 0.053 0.9979
PSN3.5 574 0.068 0.9991
Fig. 3. Chemical compositions of activated carbon derived from pistachio shell by
NaOH activation.

In the adsorption equilibrium experiments, an amount of the
activated carbons (0.1 g) and 0.1 dm3 of an aqueous phase were
placed in a 0.25-dm3 flask and stirred for 4 days in a water bath
(Haake Model K-F3) at 30 ◦C. Preliminary tests showed that adsorp-
tion was complete after 3 days. The aqueous solution was prepared
by dissolving solute to required concentration without pH adjust-
ment. The molecular structures of MB, BB1, and AB74 have been
described earlier [54]. The procedures for measuring adsorption
isotherms and rates were identical to those described previously
[55]. The concentrations of MB, AB74, and BB1 were determined
with a Hitachi UV/visible spectrophotometer (U-2001). Each exper-
iment was repeated at least three times under identical conditions.
The amount of adsorption at equilibrium, qe (g kg−1), was calculated
by

qe =
(

C0 − Ce

W

)
V (9)

where C0 and Ce are the initial and equilibrium liquid concentra-
tions (g m−3); V is the volume of the solution (m3); and W is the
weight of dried carbons used (kg).

In order to compare the validity of two isotherm equations, a
normalized standard deviation �qe (%) is calculated,

√∑ 2
�qe (%) = 100
[(qe,exp − qe,cat)/qe,exp]

N − 1
(10)

where N is the number of data.

ch equations.

Freundlich eq.

�qe (%) K∗
F

1/n r2 �qe (%)

2.98 182 0.217 0.970 2.85
6.20 429 0.181 0.926 15.7
5.90 531 0.186 0.864 11.4
8.83 413 0.298 0.954 8.02

6.25 216 0.085 0.880 2.16
25.1 410 0.081 0.989 1.25

7.72 437 0.094 0.902 4.87
14.3 474 0.099 0.880 6.56

2.63 116 0.093 0.995 0.45
9.59 119 0.250 0.990 2.43
2.77 115 0.283 0.953 5.80
3.19 131 0.294 0.948 6.68
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Fig. 4. Adsorption isotherm equilibrium of (a) BB1, (b) MB, and (c) AB74 at 30 ◦C on
the activated carbons (PSN2 (©), PSN2.5 (�), PSN3 (�), and PSN3.5 (♦), respectively).
g Journal 162 (2010) 21–27

4. Results and discussion

4.1. Properties of the activated carbons

This work prepared activated carbons from pistachio shells
with NaOH at various NaOH/char ratios. Fig. 2(a) shows the rela-
tionships between BET specific surface area (Sp) and micropore
surface area ratio (Smicro/Sp) and NaOH/char ratios. The data reveals
that Sp increases with increased NaOH/char ratio, from 939 to
1936 m2 g−1. S /S values are between 0.87 and 0.93, a small
micro p

variation. Fig. 2(b) shows the relationship between total pore vol-
ume (Vpore) and mean pore size (Dp) and NaOH/char ratios which
reveals that Vpore increases with NaOH/char ratio, from 0.56 to
1.08 cm3 g−1. Dp values are between 2.2 and 2.4 nm.

Fig. 5. Adsorption of (a) BB1 on PSN3.5, (b) AB74 on PSN2, (c) AB74 on PSN2.5 fitted
with new linear form of Redlich–Peterson isotherm equation.
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Table 2
Analysis of adsorptions of dyes on the activated carbons based on Redlich–Peterson equations.

Dyes Carbon q′
mon bRP (m3/g)˛ ˛ r2 �qe (%)

BB1 PSN2 351 0.079 0.88 0.9993 1.79
PSN2.5 953 0.134 0.96 0.9998 0.30
PSN3 1130 0.244 0.96 0.9999 4.81
PSN3.5 1194 0.169 0.92 0.9990 4.23

MB PSN2 200 0.505 0.90 0.9975 1.88
PSN2.5 463 1.912 0.94 0.9999 0.65
PSN3 658 0.442 0.98 1.0000 0.86
PSN3.5 728 0.469 0.98 1.0000 4.80

AB74 PSN2 126 1.031 0.92 1.0000 0.42
1
2
1

B

a
w
E

4

(
P
r
r
e
t
0

T
R

PSN2.5 173 0.54
PSN3 373 0.09
PSN3.5 380 0.14

B1: Cmax = 500 g m−3, MB: Cmax = 700 g m−3, AB74: Cmax = 400 g m−3.

Analyzed elements [56,57] express the chemical properties of
ctivated carbon prepared with chemical activation. Fig. 3 lists
eight percents of C, O, and H of the activated carbons studied.

lement C is 71–79 wt%; O, 18–25 wt%; H, 1.2–2.0 wt%.

.2. Adsorption equilibrium of dyes and three isotherm equations

This isotherm equilibrium adsorption study used three dyes
BB1, MB, and AB74) as adsorbates and PSN2, PSN2.5, PSN3, and
SN3.5, the activated carbons of activated at different NaOH/char

atios, as adsorbents. Fig. 4(a)–(c) shows the experiment data
esults. Data were fitted with Langmuir and Freundlich isotherm
quations, and the results summarized in Table 1. Table 1 shows
hat r2 values of the Langmuir isotherm equation are larger than
.9972. However, �qe (%) values are widely distributed, from 2.63%

able 3
edlich–Peterson and Langmuir isotherm equations of the adsorption of dyes obtained fr

No. Dyes Adsorbent Redlich–Peterson eq.

˛ bRP (m

1 Malachite G AC 1.00 0.0
2 RR Silica 1.00 0.0
3 MB Lemon peel 1.00 0.0
4 MB AC 1.00 0.0
5 RY FS400 0.99 0.2
6 RB19 CC/OPA 0.965 0.0
7 BlueG Beet pulp 0.96 0.0
8 MB Red mud 0.949 0.2
9 BG RHA 0.939 2.1

10 RR FS400 0.93 0.0
11 Blue-G Fungus 0.925 0.0
12 BB3 Peat 0.914 0.3
13 RR Silica 0.91 0.1
14 RB FS400 0.91 0.1
15 Blue-G Fungus 0.901 0.1
16 Malachite G Biomass 0.894 0.1
17 BY21 Peat 0.887 0.1
18 AR AC 0.868 1.2
19 AB AC 0.866 17.2
20 BR22 Peat 0.865 0.9
21 MV BFA 0.861 2.3
22 BR22 Kudzu 0.843 0.2
23 AY AC 0.825 32.8
24 MB Fibres 0.74 0.7
25 MV WC 0.677 0.7
26 AR WC 0.657 1.9
27 CR WC 0.648 0.3
28 OG WC 0.602 0.6
29 Malachite G ACL 0.618 3.2
30 Malachite G ACC 0.597 68.6
31 Malachite G BFA 0.583 89.2
32 RB Alga 0.53 0.3
33 RB Alga 0.48 0.5
34 OG MV 0.458 182
35 RB19 CC/OPA 0.188 0.4
0.82 0.9991 2.16
0.94 0.9988 2.01
0.92 0.9997 2.58

to 25.1%. This study excellently fitted the Freundlich isotherm equa-
tion to the experimental data of the adsorption systems of MB and
AB74 on PSN2 and PSN2.5 with very small deviation values.

To fit the R–P isotherm equation to experimental data set, the
linear regression lines were constructed by plotting Ce/qe vs. C˛

e of
Eq. (3) with various ˛ values. In this paper, first, the value of C˛

e
was calculated for each ˛ value, and then the linear regression line
associated with this specific ˛ value was plotted.

Fig. 5(a)–(c) shows three families of regression lines for the
adsorption systems of BB1 on PSN3.5, AB74 on PSN2, and AB74

on PSN2.5, respectively. The ˛ values of the most suitable linear
regression lines are, respectively, 0.92, 0.92, and 0.82. The inter-
ceptions of straight lines are all close to 0 for all ˛ values. Table 2
lists the obtained values of q′

mon, bRP, ˛, r2, and �qe (%). All the r2

values are larger than 0.9988 and all the �qe (%) values are less

om the literature.

Langmuir eq. qmon (g/kg) Ref.

3 g−1)˛ q′
mon

198 510 509 [32]
12 16.1 16.2 [60]
558 33.2 33.2 [61]
442 401 401 [33]
8 700 714 [16]
4 434 667 [11]
20 194 250 [41]
61 1.93 2.64 [9]
0 19.5 26.2 [34]
2 180 213 [16]
14 502 601 [62]
27 324 556 [8]
84 15.9 24.1 [60]
0 168 278 [16]
6 324 555 [62]
42 78.9 118 [31]
21 355 667 [8]
0 58.6 101 [24]

61.9 101 [24]
96 128 312 [8]
5 17.5 26.2 [19]
93 69.8 192 [62]
9 74.3 129 [24]
7 2.48 5.56 [64]
1 38.4 240 [25]
3 35.4 246 [25]
5 31.9 234 [25]
6 25.9 236 [25]
9 7.36 42.2 [65]

1.21 8.27 [63]
25.5 170 [65]

6 16.2 357 [57]
1 17.6 476 [59]

3.10 26.2 [19]
14 53.9 909 [11]
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han those listed in Table 1 of the fitted Langmuir and Freundlich
sotherm equations. Tables 1 and 2 show that �qe (%) values of MB
dsorption on PSN2.5 are, respectively, 25.1%, 1.25%, and 0.65% for
angmuir, Freundlich, and R–P isotherm equations. The Freundlich,
nd R–P isotherm equations are much more suitable than the Lang-
uir equation in fitting to the data set of MB adsorption on PSN2.5.

he value of bRP in the R–P isotherm equation is high, up to 1.912,
or MB adsorption on PSN2.5, much higher than 0.079–0.244 for
B1 adsorption as shown in Table 2. Fig. 4(a)–(c) shows the calcu-

ated curves of three isotherm equations and that the curvatures
f the curves of the R–P equation are higher than those of the Fre-
ndlich equation but lower than those of the Langmuir equation.
ll ˛ values were less than 1 (see explanation of Fig. 1), from 0.82

o 0.98 as listed in Table 2.
Table 3 lists thirty-five adsorption systems of dyes fitted with

he R–P isotherm equation. Among them, four systems have an ˛
alue of 1 and the rest have an ˛ value less than 1. Large molecule
dsorption, as in dyes, is not easy in accordance with the theory of
onolayer adsorption upon which the Langmuir isotherm equa-

ion is based. This is because impediments exist between pores and
dsorbate so the ˛ value is usually less than 1.

In a report of dye adsorptions on chitosan [14], the Langmuir
sotherm equation was better fitted to the adsorptions of AG25,
R18, AR73, AO12. The Freundlich isotherm equation was better
tted to the adsorption of AO10 and the R–P isotherm equation to
hose of all dyes with the lowest error values. In a report of basic
ye adsorption on kudzu [58], the error values of Freundlich and
–P isotherm equations in fitting to the adsorption of BY21 were
oth the same and the least. The error value of the R–P isotherm
quation in fitting to the adsorption of BR22 was the least. In a
eport of reactive dye adsorption on green alga [59], the errors of
reundlich and R–P isotherm equations in fitting to RBB adsorption
ere both the same and the least. Consequently, the above reports

how that error values of the R–P isotherm equation are either close
o those of the Freundlich or the Langmuir equations, or less than
hose of both equations. These findings agree with the results of
his study.

. Conclusions

This study explains the special conditions of the R–P isotherm
quation and proves they are in accordance with Langmuir and
reundlich isotherm equations. Thus the R–P isotherm equation
s suitable for wide applications. This investigation deduces the
imensionless form of the R–P isotherm equation and plots curves
f the dimensionless form. The current study explains that the ˛
alue modifies R–P isotherm equation curves. Microporous acti-
ated carbons with BET specific surface area (Sp) from 939 to
936 m2 g−1 were prepared from pistachio shells with NaOH acti-
ation for the adsorptions of three dyes (AB74, BB1, and MB). The
inear regressions calculated are used to identify the most suit-
ble ˛ value. This is a simple and accurate calculation method.
n fitting the data sets of the adsorptions of three dyes, the
–P isotherm equation is the best with ˛ values being between
.82 and 0.98. This investigation employed thirty-five adsorp-
ion systems of dyes reported in the literature to explain the
xistence of a solid impediment between pores and adsorbate,
o the ˛ value is usually less than 1 in the adsorption of large
olecules.
cknowledgments
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